Climate Change RSS feed

How Will Climate Change Affect the Use of Fallow in Cropping Systems in Our Region?

Posted by Karen Hills | June 21, 2018
Wheat residue on dry field

Wheat residue on field near Ritzville, Washington, which is part of the a grain-fallow cropping system. (Photo: D. Kilgore)

In non-irrigated areas that are too dry to support annual cropping, fallow (the practice of leaving land unplanted) preserves soil moisture for future crops. However, annual fallow combined with conventional tillage has resulted in a net decrease in soil carbon over time in our region, with negative impacts to soil health across large areas. And even when tillage is eliminated, it is very difficult to maintain soil carbon over time in a wheat-fallow system.  For this reason, the impact of climate change on the frequency of fallow in crop rotations has important future implications both for soil health and for opportunities for carbon sequestration.

Read more »

Calculating Climate Benefits for Climate Smart Farms

Posted by Georgine Yorgey | June 14, 2018
Dale Gies near silos

Farmer and long-time CSANR advisory committee member, Dale Gies. Photo: S. Kantor.

What are the climate impacts of a given farm practice?  While we know lots of strategies for reducing greenhouse gas emissions on farms, quantifying that impact can be difficult.  However, there is at least one farm in our region –one that uses some pretty neat practices – for which scientists have attempted to answer that question.  And the farmer just happens to be a long-time member of CSANR’s advisory committee, Dale Gies. Read more »

Turning Urban Wood Waste into Biochar

Posted by Karen Hills | June 11, 2018

Biochar as a soil amendment has been the subject of much attention in recent years because of its ability to sequester carbon and to improve aggregation, water holding capacity, and organic matter content of soil amended with it (Lehmann, 2007; Marris, 2006). A recent article on the Ag Climate Network blog from our colleagues at Oregon State University discusses what’s needed to economically produce forest to farm biochar. In contrast, researchers at Washington State University are investigating what we could call waste to farm biochar. Waste to farm biochar, if deployed on a larger scale, could offer a two-part benefit – removal of wood from the municipal solid waste stream and creation of a valuable product from this wood. In recent work, researchers are looking at two possible wastes that could be made into biochar: wood-based fractions of municipal solid waste and the large woody material remaining after compost production—referred to as “compost overs.” Read more »

New publication tackles approaches to nutrient recovery from dairy manure

Posted by Georgine Yorgey | June 7, 2018

Low angle of dairy cattle in feed aisle

Building on our long-term efforts relating to dairy nutrient management, we now have a new publication that summarizes the various approaches being explored for nutrient recovery on dairies – and what we know about the current costs and performance that are associated with each strategy.  The publication, Approaches to Nutrient Recovery from Dairy Manure, was a long term effort by Craig Frear (formerly of CSANR), Jingwei Ma, and Georgine Yorgey (CSANR). This publication is a companion to The Rationale for Recovery of Phosphorus and Nitrogen from Dairy Manure.

CSANR has worked in the field of dairy waste nutrient recovery for a number of years.  Please visit our Anaerobic Digestion topic page for additional publications, videos, and resources, as well as our Anaerobic Digestion Systems project page for specifics on our work.

New Ideas for Improving the Resilience of Semi-Arid Systems

Posted by Karen Hills | March 15, 2018

Karen Hills and CSANR Associate Director, Georgine Yorgey co-wrote this post.

Wheat field under blue skies with scattered white clouds

Dryland areas are historically used for wheat production. Photo: USDA, ARS.

Across the dryland areas of the inland Pacific Northwest, soil erosion and the use of near monocultures of wheat have long been serious sustainability challenges, ones that we have been working on for decades, including over the last seven years through regional collaborations. Reducing or eliminating tillage has been one important strategy for reducing erosion across the region in recent decades.  Improving diversity by including crops such as canola, peas, chickpea and quinoa in rotations is another approach, but across the inland Pacific Northwest from 2007-2014, 53% of dryland crop acreage was used for winter or spring wheat, while an additional 31% was fallow (meaning that to preserve moisture for the following crop, no crop was grown) (Kirby, E. et al., 2017). Read more »

Crop residue–Help or hindrance?

Posted by Karen Hills | January 25, 2018

The production of crop residue varies dramatically across the Inland Pacific Northwest, with estimated residue production for winter wheat ranging from roughly 0.9 ton/acre in the drier grain-fallow cropping system (Figure 1) to 8.5 ton/acre in the wetter annual crop system, which has enough precipitation to support cropping every year. Crop residues are often seen as simply something to “manage” so that they don’t impede future plantings or as a byproduct that can be sold to help improve the bottom line. However, while editing chapters for the recently released publication Advances in Dryland Farming in the Inland Pacific Northwest, I was introduced to another way to think about these residues in the chapter in that publication titled “Crop Residue Management” (.pdf). The lead author, Haiying Tao from Washington State University, and her co-authors make the interesting point that crop residues should be seen as a valuable resource and that there’s an important tradeoff that should be considered before exporting them from the farm. Residues not only serve a critical role in protecting soils from wind and water erosion between crops, they also add carbon and nutrients back to the soil, improving soil health and helping to maintain its productivity over time. Read more »

Filed under Climate Change, Sustainability
No Comments

How will climate change affect pests of inland Pacific Northwest cereal systems?

Posted by Karen Hills | December 13, 2017

Cover image of book: Advances in Dryland Farming in the Inland Pacific Northwest. Washington State University Extension. EM108. Background image is rolling field of green at sunset with pink cloudsModels suggest that climate change in our region will involve an annual temperature increase of 3-4°F by the 2050’s, accompanied by changes in precipitation patterns, including drier summers despite a 5-15% increase in annual precipitation (Kruger et al. 2017). Even with this information, uncertainty still exists about what climate change will mean for agriculture, in general, and for dryland farming systems in our region, in particular. The book Advances in Dryland Farming in the Inland Pacific Northwest, does its part to help managers make decisions despite this uncertainty. Three chapters in this book explore management of diseases, insects, and weeds (the three major categories of pests) and were written by teams of authors led by Elizabeth Kirby (Washington State University), Sanford Eigenbrode (University of Idaho), and Ian Burke (Washington State University), respectively. Though these chapters provide a wide range of regionally-relevant information that goes far beyond climate, I found it particularly interesting to read through them with an eye to what farmers might expect in terms of changes in pest pressures as a result of projected changes in the climate. Through this process, I learned that although climate change models have improved vastly in recent years, quite a bit of uncertainty exists about the effects of climate change on complex biological systems. Read more »

Tillage: When Less Is More

Posted by Karen Hills | December 5, 2017

Though severe erosion can quickly deplete topsoil, rebuilding topsoil is an extremely difficult and slow process, so conserving this resource is imperative. Soil erosion is one of the biggest challenges in agricultural production in the inland Pacific Northwest. Conventional tillage can lead to soil degradation and erosion by wind and water, which can cause concerns for air and water quality, respectively. Conservation tillage—a tillage system which retains residues from the previous crop on the surface, resulting in at least 30% coverage of the soil surface after the planting of the next crop—can dramatically reduce soil erosion. It also offers other benefits, such as improvements in soil quality (Figure 1) and reduced fuel use, allowing it to be widely adopted in some parts of the region. There are many types of conservation tillage used in the Pacific Northwest, which offer different levels of protection of the soil, all the way up to no-till, which results in minimal soil disturbance and maximum retention of soil residue. These differences in practices, as well as other factors, have led to variations across the region in how effective (and profitable) conservation tillage has been. Fortunately, a new resource is available that digs into these differences and why they occur. Read more »

Real-life agricultural innovation: implications for future preparedness

Posted by Sonia A. Hall | December 4, 2017

Extension has traditionally involved getting results from researchers to decision-makers in agriculture. Partly because I work on climate change and agriculture, and partly because of the approach my team and the researchers we work with take, extension is, for us, a two-way street. In this article I want to highlight the “other” side of that street: how innovations that producers test out in real life complement research and supports future preparedness.

Both John Aeschliman (left) and Douglas Poole (right) practice no-till, though they farm with very different precipitation regimes. Photo: Alex Garland.

In preparation for a new project I reviewed case studies and profiles others I work with published as part of the Regional Approaches to Climate Change – Pacific Northwest Agriculture (REACCH-PNA) project, which focused on dryland cereal production in a changing climate. These case studies tell the stories of producers who are implementing practices that break some mold, and that is leading to both interesting results and to benefits that will help them be prepared for future climates. Here I highlight the startling similarities in the stories of two farmers that farm in different precipitation zones. John Aeschliman farms in Colfax, Washington, with a range of precipitation up to 18+ inches annually. Doug Poole farms in Mansfield, Washington, with half that precipitation. Both these farmers are innovative pioneers, and transitioning to no-till is a cornerstone of their innovations. And both no-till and innovation have implications for preparing for future climates. Read more »

Stepping back: What have we learned about agriculture and climate change, and where do we go from here?

Posted by Georgine Yorgey | November 29, 2017

Cattle grazing on an allotment east of the Owyhee River Canyon, Oregon. Used with permission via Flickr from the Bureau of Land Management (CC BY 2.0).

As a number of large climate-and-agriculture projects at our Pacific Northwest universities have come to an end over the last year, we felt it was time to step back and take stock.  Our projects have included dryland wheat farming, anaerobic digestion systems for dairies, and improving understanding of the interactions among carbon, nitrogen, and water at the regional scale. Now that they are complete, what have we learned? Where should research and extension go from here? In an effort to prioritize and catalyze future regional research and extension efforts, we worked with partners to host a workshop titled “Agriculture in a Changing Climate” (March 9-11, 2016). The event brought together a diverse set of stakeholders—university faculty and students, crop and livestock producers, and individuals representing state, tribal and federal government agencies, industry, nonprofit organizations, and conservation districts—to summarize what we know, identify challenges and gaps, and define priorities for moving forward. Since that workshop, a group of us have been working together to continue to synthesize recent research findings and identify priorities related to climate mitigation and adaptation in the Northwest, and the product of that work is now freely available as an online article. Read more »

« Older Posts