Climate Change RSS feed

Hot, hotter, hottest (so far) – Should I care?

Posted by Sonia A. Hall | February 9, 2017

I must confess that sometimes I like geeking out on data—raw climate data, for example. But most of the time I don’t have enough background knowledge about the complex and detailed data I’m looking at to interpret what it shows me about the big picture. So I really appreciate it when the experts take the time to present and discuss their data in a way that helps me understand the underlying patterns. If you are like me in that way, you might enjoy a recent (January 2017) Beyond the Data blog article by NOAA climate scientist Jessica Blunden, discussing how unusual the 2014-2016 global record-temperature “three-peat” is, relative to the temperature record over the last 100+ years.

Granted, you can argue that Blunden chose this “three-peat” to make a particular point. Yes, choosing a particular way to slice the data can be arbitrary, unless you have the statistical expertise to pull out from the data themselves the most relevant slicing (which I don’t). Nonetheless, Blunden’s article provides some interesting food for thought about long-term trends, and a variety of ways to look at the data to see if we should care about a particular pattern, in this case the 2014-2016 “three-peat.” Read more »

Filed under Climate Change
No Comments

Flex Cropping – Storing More Carbon Under Challenging Environmental Conditions

Posted by Georgine Yorgey | December 16, 2016

Residues from more frequent cropping feed the soil by adding organic matter. Grower Bill Jepsen pictured. Photo: S. Kantor.

Organic matter – the organic component of soil – is key to soil health. Organic matter serves as a reservoir of nutrients for crops, provides soil aggregation, increases nutrient exchange, retains moisture, reduces compaction, reduces surface crusting, and increases water infiltration into the soil. And organic matter is closely related to soil organic carbon, the carbon stored in organic matter. Soils with high levels of organic matter have higher levels of carbon, and consequently also benefit the climate by “sequestering” carbon that otherwise would be in the atmosphere.

In the rain-fed croplands of the Pacific Northwest, wheat-based agriculture has historically mined carbon out of the soil. Near Pendleton, winter wheat grown every other year depleted soil organic carbon up to 63% over 80 years of cultivation.[1] Re-building soil carbon is thus an important task for supporting continued agricultural productivity across the region. Read more »

BioEarth Webinar Series: Reporting on five years of climate impacts & nutrient dynamics research in the Northwest US

Posted by Liz Allen | November 30, 2016

WSU’s BioEarth research team is hosting a webinar series in collaboration with the Center for Sustaining Agriculture and Natural Resources. The BioEarth project has sought to model biogeochemical cycles in a changing climate at the regional scale. Researchers will share their findings related to climate change impacts on Northwest US water resources, nutrient cycling, and managed and natural ecosystems. Webinars will focus on implications of research results for natural and agricultural resource management decisions. Details about the webinar series are available here. Read more »

Filed under Climate Change, News and Announcements
No Comments

High Residue Farming Workshop for Irrigated Producers

Posted by Georgine Yorgey | November 21, 2016
Corn plants coming up among strips of wheat.  Photo: D. Kilgore.

Corn plants coming up among strips of wheat. Photo: D. Kilgore.

WSU Extension is hosting an upcoming workshop on the basics of High Residue Farming on November 30, 2016, 9:30-3:30 in Moses Lake.  Details for those interested in attending are available here (lunch included if you pre-register by 11/22).

High residue farming is a term that covers a number of different specific farming practices, including strip-till and direct seeding. In all these systems, the amount of tillage is reduced in order to maintain crop residues on the soil surface.  High residue farming provides a number of benefits, but two key ones include reducing wind erosion (and the need to replant sand-blasted crops) and reducing the amount of time and equipment needed to plant. It can also improve soil health, increase the amount of carbon stored in the soil, and in some cases increase the potential for double-cropping. Read more »

Growing condition analogues – Understanding future climate through past experience

Posted by Kirti Rajagopalan | November 14, 2016
Though Appletown in this article is a theoretical location, producers sharing what practices work for them is a real source of information that can help others make decisions under uncertain future conditions. Photo credit: Scott Bauer/USDA, under CC BY 2.0

Though Appletown in this article is a theoretical location, producers sharing what practices work for them is a real source of information that can help others make decisions under uncertain future conditions. Photo credit: Scott Bauer/USDA, under CC BY 2.0

Weather is the most important driver of agricultural production. Year-to-year changes in the weather affect growing conditions, which then lead to important swings in yields, quality, timing and marketability of Pacific Northwest products such as apples, wheat, potatoes, and hay. In a similar way, changes in climate are leading to changes in growing conditions, and these changes also pose risks to production. Growing condition analogues are an approach to identifying and exploring past experiences that are relevant to understanding the risks expected in the future.

Over the years—and in some cases over generations—producers have refined their management practices to best address the complex interactions between the crops they grow and the wide range of growing conditions that determine the productivity and sustainability of their operation. These best practices are adapted to the local conditions and are continuously improved over the years, creating a rich body of location-specific agronomic knowledge. With the wide range of conditions that have occurred over the Pacific Northwest’s agricultural history—to say nothing of the range of conditions across different agricultural regions in North America—there’s a wealth of experiences out there that growers can tap into. The challenge is to know which experiences can help one determine how best to prepare for what the future will bring for one’s location. That’s where growing condition analogues come in. Read more »

Filed under Climate Change
No Comments

The Fallout of October Rains in the Desert

Posted by Andrew McGuire | November 1, 2016
Photo: C. Chene via Flickr cc.

Photo: C. Chene via Flickr cc.

Here in the Columbia Basin, something extraordinary has happened; it rained a lot in October. Although not technically a desert, we are normally desert-like from June-October. Not this year. How much rain did we get? Well, in Ephrata where I live, we have seen over 2.5 inches of rain. I know, not much, even by Inland Northwest standards. But 2.5” is record rainfall for us – never have we seen so much rain in October – and it has had some consequences.

They don’t often admit it, perhaps out of respect for dryland farmers to the East, but farmers in the Columbia Basin prefer to get their water out the end of a sprinkler. They like to control how much and when the water falls on their fields.  When it comes out of the sky, it messes things up. The rains have delayed harvest of late potatoes, onions, dry beans and other crops. Although I expect all these crops will be harvested, the wet ground and crops probably caused some yield losses, and equipment traffic on wet soils likely compacted soils which will require additional tillage to fix.

Read more »

Filed under Climate Change, Sustainability
No Comments

Keep an eye on those pests! Vigilance and adaptability to climate change

Posted by Sonia A. Hall | September 12, 2016

I’m a “lumper” rather than a “splitter.” Give me lots of details on different crops, yields, pests, or weeds, and I’ll try to pull out some overarching idea to remember (I’m likely to forget the details). Luckily there are people who thrive on the details, as was made clear to me in a webinar given by Dr. Sanford Eigenbrode earlier this year, discussing climate change and insects in wheat systems.

Wheat infected with Barley Yellow Dwarf Virus (BYDV). Photo: Dr. Juliet Marshall, University of Idaho.

Wheat infected with Barley Yellow Dwarf Virus (BYDV). Photo: Dr. Juliet Marshall, University of Idaho.

Because I am a “lumper”, I’ll start with the overarching point I took away from the webinar: we (that is, entomologists like Dr. Eigenbrode, not me personally) know enough about the insect pests affecting wheat systems in the Pacific Northwest to know that different insects, the viruses they spread, and the parasitoids and predators that control them will respond differently to a changing climate. So while crop models suggest that wheat yields in our high latitudes will fare reasonably well as carbon dioxide concentrations increase and the climate warms, there is still a huge question mark related to whether insects and other pests will allow such yields to happen. Vigilance, and knowing what insects to pay particular attention to, can therefore make a big difference to wheat growers’ collective ability to respond and adapt to changes. Read more »

Filed under Climate Change
4 Comments

Orchard Netting: A Catch All for Climate Change Adaptation

Posted by Brendon Anthony | August 22, 2016

Brendon Anthony is pursuing a Master of Science in the Horticulture program at Washington State University.

As a child in elementary school I learned that the two basic requirements for the growth and success of a plant are sunlight and water. However, as I have undergone further schooling and research, specifically in horticulture, I have learned how extremely simplified those requirements are. In reality, it takes numerous inputs and extensive management to steward the growth of a plant.

Honeycrisp apples like these are an important tree fruit crop in the state. Photo: D. Rivard via Flickr c.c.

Honeycrisp apples like these are an important crop to the PNW tree fruit industry. Photo: D. Rivard via Flickr c.c.

Though sunlight and water are not the full picture, they are certainly foundational. In the face of a changing climate with more extreme and unpredictable weather, they are resources that are becoming more and more challenging to preserve, utilize, and control. How to best manage sunlight and water is being investigated and tested by the Pacific Northwest tree fruit industry. This is an industry that relies on consistent temperatures both in the winter to facilitate dormancy, and during the growing season to prevent frost damage or sunburn. It is an industry that uses gallons upon gallons of water to ensure a high yield. So, how does an industry so dependent upon these crucial resources react to a rapidly changing climate, all while maintaining sustainability in their pocket books and in their surrounding environment? Read more »

Biosolids – understanding benefits and risks

Posted by Georgine Yorgey | August 16, 2016
Biosolids being spread on agricultural fields. Photo: A. Bary.

Biosolids being spread on agricultural fields. Photo: A. Bary.

Biosolids?  Yes, that means sewage sludge.  Well, sort of.  But before you say YUCK and click off the page, let’s start with what they really are: biosolids are the materials produced from digestion of sewage at city wastewater treatment plants. They are rich in plant nutrients such as organic carbon, nitrogen, and phosphorus, and can be applied to wheat, alfalfa, and timber land for plant fertilization and soil conditioning. When biosolids are applied at rates that meet plant nutrient needs, farmers and researchers are seeing crop yields equal to or greater than those seen with synthetic fertilizer. Applying biosolids as fertilizer also allows them to be recycled for a useful purpose rather than disposed of in landfills or incinerated.

Read more »

How useful are models anyway? An example, now open for public comment

Posted by Sonia A. Hall | July 14, 2016
Cover of the draft 2016 Long-Term Supply and Demand Forecast Legislative Report, currently available for public comment.  Click image for link.

Cover of the draft 2016 Long-Term Supply and Demand Forecast Legislative Report, currently available for public comment. Click image for link.

Water, water everywhere… but will it continue to be there in the future? Will it be available when we need it? Or do we need to invest in projects or policies now, because the water in the future will not be the same as in the past? These are the issues that the collaborative research team working on the 2016 Columbia River Long-Term Supply and Demand Forecast are using models to address, at the direction of the Office of the Columbia River (OCR, part of the Washington Department of Ecology) and the Washington State Legislature.

Preliminary model results were presented at three public workshops in Richland, Wenatchee and Spokane in late June, and the draft report is available for public comment on OCR’s website until July 20, 2016. Here’s the summary of changes in water supply projected by this research:

  • Average annual supply of water for all uses across the Columbia River Basin down to Bonneville Dam is expected to increase around 12% by 2035.
  • That water would be available earlier in the spring than it has been in the past: water supply between November and May is projected to increase by almost 30%, while water supply between June and October is projected to decrease almost 11%.

Read more »

Filed under Climate Change, Sustainability
No Comments

« Older Posts