Ma Publications

17 Publications

Digested Fiber Solids: Methods for Adding Value

Jim Jensen , Dr. Craig Frear , Dr. Jingwei Ma , Chad Kruger , Rita L. Hummel , Georgine Yorgey , WSU Fact Sheet FS235E. November 2016.  This publication describes the composition and separation process for fibrous solids that result from the digestion of dairy manures. It also reviews both current and future potential uses of fiber. This fact sheet is part of the AD Systems Series.

Anaerobic digestion effluents and processes: the basics

S. M. Mitchell, N. Kennedy, J. Ma, G. Yorgey, C. Kruger,  J. L. Ullman, C. Frear.  Sept 2015. WSU Fact Sheet FS171E. This fact sheet reviews the basic elements of anaerobic digestion and the process used by digesters, including the types of digesters, biochemistry of influents and effluents, laboratory evaluations and optimizing anaerobic digesting through modeling. This fact sheet is part of the AD Systems Series.

Technology Research and Extension Related to Anaerobic Digestion of Dairy Manure, 2013-2015 biennium

Chen, S., C. Frear, M. Garcia-Perez, C. Kruger, A. Abghari, P. Ai, N. Abu-Lail, G. Astill, I. Dallmeyer, M. Flury, A. Fortuna, A. Gao, J. Garcia-Nunez, R. Ghoghare, J.B. Harsh, H. Iqbal, J. Jensen, N Kennedy, J. Ma, S. Mitchell, M. Smith, W. Suliman, D. Wang, G. Yorgey, L. Yu, Q. Zhao, S. Zhang, and T. Zhu. 2015. Washington State Department of Agriculture, Olympia, WA.

Advancing Organics Management in Washington State: The Waste to Fuels Technology Partnership

Chen, S., C. Frear, M. Garcia-Perez, J. Jensen, D. Sjoding, C. Kruger, N. Abu-Lail, G. Astill, I. Dallmeyer, M. Flury, A. Fortuna, J. Garcia-Nunez, S. Hall, J.B. Harsh, H. Iqbal, N Kennedy, J. Ma, S. Mitchell, B. Pecha, R. Pelaez-Smaniego, A. Seker, M. Smith, W. Suliman, G. Yorgey, L. Yu, and Q. Zhao. 2016. Publication 16-07-008. Washington Department of Ecology, Olympia, WA.

The selective removal of H2S over CO2 from biogas in a bubble column using pretreated digester effluent

Kennedy, N., Zhao, Q., Ma, J., Chen, S., and Frear, C. (2015). Separation and Purification Technology 144, 240-247.

Ammonia recovery from anaerobic digester effluent through direct aeration

Zhao, Q., Ma, J., Zeb, I., Yu, L., Chen, S., Zheng, Y.M., and Frear, C. (2015). Chemical Engineering Journal 279, 31-37.

Review of emerging nutrient recovery technologies for farm-based anaerobic digesters and other renewable energy systems

Prepared for Innovation Center for US Dairy by Jingwei Ma, Nick Kennedy, Georgine Yorgey and Craig Frear.  Nov 2013.  Washington State University.

Odor in Commercial Scale Compost

Ma, J., K. Wilson, Q. Zhao, G. Yorgey and C. Frear. 2013.  Ecology Publication 13-07-066

Methanosarcina domination in anaerobic sequencing batch reactor at short hydraulic retention time

J. Ma, B. Zhao, C. Frear, Q. Zhao, L. Yu, X. Li, S. Chen. June 2013.Bioresource Technology Volume 137, June 2013, Pages 41–50.

Anaerobic Digestion of Algal Biomass Residues with Nutrient Recycle

April 2013. Zhao, B., J. Ma, Q. Zhao, and C. Frear.  WSU subcontract work on Department of Energy Project 22902.

A simple methodology for rate-limiting step determination for anaerobic digestion of complex substrates and effect of microbial community ratio

J. Ma, C. Frear, Z. Wang, L. Yu, Q. Zhao, X. Li, S. Chen. Bioresource Technology.  Volume 134, April 2013, Pages 391–395.

Kinetics of psychrophilic anaerobic sequencing batch reactor treating flushed dairy manure

J. Ma, L. Yu, C. Frear, Q. Zhao, X. Li, S. Chen. Bioresource Technology.  Volume 131, March 2013, Pages 6–12.

Experimental and modeling study of a two-stage pilot scale high solid anaerobic digester system

L. Yu, Q. Zhao, J. Ma, C. Frear, S. Chen. Bioresource Technology. Volume 124, November 2012, Pages 8–17.

Two novel floor-scale anaerobic digester systems for processing food waste. Part 1: Multi-reactor, liquid recycle system for high solids. Part 2: Moderate solids system.

Frear, C., Ewing, T., Yu, L., Ma, J., and Chen, S. 2012. Olympia, WA. Washington State Department of Ecology.

Bipolar effects of settling time on active biomass retention in anaerobic sequencing batch reactors digesting flushed dairy manure

Z. Wang, J. Ma, S. Chen. Bioresource Technology. Volume 102, Issue 2, January 2011, Pages 697–702.

Development of New Digester Technologies for Improved Adoption and Cost Reduction

Chapter 11 in Climate Friendly Farming: Improving the Carbon Footprint of Agriculture in the Pacific Northwest. Full report available at

Organic Waste to Resources and Pilot Project Report: Biodiesel and Biohydrogen Co-Production with Treatment of High Solid Food Waste

Yubin Zheng, Jingwei Ma, Zhanyou Chi, and Shulin Chen, September 2009. two-step process was developed as a potential technology to produce hydrogen and biodiesel from food waste. The first process use fermentative bacteria to breakdown glucose from food waste to produce hydrogen and volatile fatty acids (VFA). The VFA are then fed to yeast for simultaneous carbon sequestration resulting in production of biodiesel from the oil-producing microbial biomass.