Zhao Publications

13 Publications

Methanosarcina domination in anaerobic sequencing batch reactor at short hydraulic retention time

J. Ma, B. Zhao, C. Frear, Q. Zhao, L. Yu, X. Li, S. Chen. June 2013.Bioresource Technology Volume 137, June 2013, Pages 41–50.

Anaerobic Digestion of Algal Biomass Residues with Nutrient Recycle

April 2013. Zhao, B., J. Ma, Q. Zhao, and C. Frear.  WSU subcontract work on Department of Energy Project 22902.

A simple methodology for rate-limiting step determination for anaerobic digestion of complex substrates and effect of microbial community ratio

J. Ma, C. Frear, Z. Wang, L. Yu, Q. Zhao, X. Li, S. Chen. Bioresource Technology.  Volume 134, April 2013, Pages 391–395.

Kinetics of psychrophilic anaerobic sequencing batch reactor treating flushed dairy manure

J. Ma, L. Yu, C. Frear, Q. Zhao, X. Li, S. Chen. Bioresource Technology.  Volume 131, March 2013, Pages 6–12.

Experimental and modeling study of a two-stage pilot scale high solid anaerobic digester system

L. Yu, Q. Zhao, J. Ma, C. Frear, S. Chen. Bioresource Technology. Volume 124, November 2012, Pages 8–17.

An Integrated Pathogen Control, Ammonia and Phosphorus Recovery System for Manure and/or Organic Wastes

Q. Zhao, A. Jiang, L. Yu, C. Frear, and S. Chen. Poster presented June 2011.

An Integrated Pathogen Control, Ammonia and Phosphorus Recovery System for Manure and/or Organic Wastes

C. Frear. May 2011. PowerPoint presentation at 2011 AgSTAR Conference.

Purification Technologies for Biogas Generated By Anaerobic Digestion

Chapter 9 in Climate Friendly Farming: Improving the Carbon Footprint of Agriculture in the Pacific Northwest. Full report available at http://csanr.wsu.edu/pages/Climate_Friendly_Farming_Final_Report/.

Integrated Ammonia Recovery Technology in Conjunction with Dairy Anaerobic Digestion

Chapter 8 in Climate Friendly Farming: Improving the Carbon Footprint of Agriculture in the Pacific Northwest. Full report available at http://csanr.wsu.edu/pages/Climate_Friendly_Farming_Final_Report/.

Phosphorous Recovery Technology in Conjunction with Dairy Anaerobic Digestion

Chapter 7 in Climate Friendly Farming: Improving the Carbon Footprint of Agriculture in the Pacific Northwest. Full report available at http://csanr.wsu.edu/pages/Climate_Friendly_Farming_Final_Report/.

Biomass Inventory and Bioenergy Assessment: An Evaluation of Organic Material Resources for Bioenergy Production in Washington State.

Frear C., Zhao B., Fu G., Richardson M., Chen S., Fuchs M.R. 2005. A collaborative project between the Washington Dept of Ecology,and Washington State University’s Department of Biological Systems Engineering.

Biomass Inventory and Bioenergy Assessment

Craig Frear, Bingcheng Zhao, Guobin Fu, Michael Richardson, Shulin Chen, and Mark Fuchs, December 2005. A biomass inventory and bioenergy assessment of forty five organic resource types across Washington was completed, producing this report and a database with GIS maps (http://www.pacificbiomass.org). Annual production of over 16.4 million tons of underutilized bone dry biomass was found, capable of producing (either by combustion or anaerobic digestion) over 15.5 billion kWh of electrical energy.

Bioenergy inventory and assessment for Eastern Washington.

Shulin Chen, Craig Frear, BingCheng Zhao, and Guobin Fu. October 2003. This Phase 1 project assessed Eastern Washington′s twenty counties for available biomass and calculated the potential energy production from twenty four organic resource types. Annual production of 4.3 million tons of underutilized dry biomass was found.