Waste to Fuels Publications

55 Publications

Estimating greenhouse gas emissions from soil following liquid manure applications using a unit response curve method

G. Wang, S. Chen, C. Frear. Geoderma. Volume 170, 15 January 2012, Pages 295–304.

Biochar Produced from Anaerobically Digested Fiber Reduces Phosphorus in Dairy Lagoons

Streubel, J. D., H. P. Collins, J. M. Tarara, and R. L. Cochran.; Posted online 5 Jan. 2012

Evaluation of Co-Digestion at a Commercial Dairy Anaerobic Digester

Frear, C., W. Liao, T. Ewing, and S. Chen. Clean – Soil, Air, Water 2011,39 (7), 697–704.

Extracting valuable energy, carbon and nutrient resources from organic waste

WSU scientists have conducted extensive research on Anaerobic Digestion (AD) as a technology for recovery of methane (energy), stable carbon, and nutrients from organic wastes such as manure, food processing wastes and the organic fraction of municipal solid wastes (OFMSW). Our research has evaluated the technical and economic performance of commercially available systems, developed improved AD reactors, and commercialized WSU patented nutrient recovery technology. This webinar, presented by CSANR director Chad Kruger and CSANR scientist Craig Frear, will provide an update on the latest results from the WSU Climate Friendly Farming Project’s AD research.

Methods for Producing Biochar and Advanced Biofuels in Washington State Part 1: Literature Review of Pyrolysis Reactors

Garcia-Perez, M., T. Lewis, C. Kruger. 2011. Funding for this study is provided by the Washington State Department of Ecology with the intention to address the growing demand for information on the design of advanced pyrolysis units. This is the first of a series of reports exploring the use of biomass thermochemical conversion technologies to sequester carbon and to produce fuels and chemicals.

Anaerobic Co-Digestion on Dairies in Washington State – The solid waste handling permit exemption

WSU Extension Fact Sheet FS040E. Yorgey, G., C. Kruger, K. Steward, C. Frear, & N. Mena. August 2011.

Biogas potential and microbial population distributions in flushed dairy manure and implications on anaerobic digestion technology

Frear, C., Wang, Z., Li, C., Chen, S., (2011). Journal of Chemical Technology & Biotechnology, 86:145-152.

An Integrated Pathogen Control, Ammonia and Phosphorus Recovery System for Manure and/or Organic Wastes

Q. Zhao, A. Jiang, L. Yu, C. Frear, and S. Chen. Poster presented June 2011.

An Integrated Pathogen Control, Ammonia and Phosphorus Recovery System for Manure and/or Organic Wastes

C. Frear. May 2011. PowerPoint presentation at 2011 AgSTAR Conference.

Overview of Biomass Pyrolysis Technologies – Historical developments and potential for the production of bio-char, advances fuels and high value chemicals

Recorded webinar (online presentation) from June 1st, 2011 by Manuel Garcia-Perez, PhD; Assistant Professor, Biological Systems Engineering. The reactors used for biomass pyrolysis can be classified into slow and fast pyrolysis. While slow pyrolysis reactors are mainly used to produce charcoal, fast pyrolysis is the technology of choice to maximize bio-oil yields. Yields as high as 80 wt can be obtained with this technology. During the webinar historical developments and potential of pyrolysis technologies for the production of bio-char, advanced fuels and high value chemicals are discussed.

Economic tradeoff between biochar and bio-oil production via pyrolysis

Yoder, J., S. Galinato, D. Granatstein and M. Garcia-Perez. 2011. Biomass and Bioenergy, 35(5):1851-1862.

Smale-Scale Biogas Plant Enterprise Assessment Tool

A worksheet to facilitate preliminary planning for a biogas plant on a small farm.

Small-Scale Biogas Technology

With support from USDA Western Sustainable Agriculture Research & Education Program (Western SARE), CSANR developed a project to explore options for developing improved technology for applications in small farm settings in the US. Resources developed in the project are available on this site.

Bipolar effects of settling time on active biomass retention in anaerobic sequencing batch reactors digesting flushed dairy manure

Z. Wang, J. Ma, S. Chen. Bioresource Technology. Volume 102, Issue 2, January 2011, Pages 697–702.

WSU Thermo-Chemical Engineering Laboratory: Manuel Garcia-Perez

Professor Garcia-Perez is an expert in thermo-chemical engineering of biomass into energy and products. Our work with Garcia-Perez includes the development and evaluation of biochar from the pyrolysis of woody organic wastes as a potential soil amendment.

WSU Bioprocessing and Bioproducts Engineering Laboratory

Professor Shulin Chen’s Research Laboratory group at the WSU Department of Biological Systems Engineering. Research efforts include organic waste inventory and characterization; anaerobic digestion of manure and food processing wastes; High Solids Anaerobic Digestion for the Organic Fraction of Municipal Solid Wastes (OFMSW); recovery of nutrients and fertilizers from organic wastes; and pre-treatment technology for advanced biofuels derived from organic wastes.

Creating High Value Potting Media from Composts Made with Biosolids and Carbon-Rich Organic Wastes

Organic Waste to Resources Research and Pilot Project Report. Hummel, R., C. Cogger, A. Bary, and B. Riley, May 2010. Ecology Publication Number 09-07-069. Composted organic waste including biosolids may substitute for potting soil for nursery uses. This study found that composted organic materials can perform as well as typical peat-perlite potting mixtures.

Agent Heterogeneity in Adoption of Anaerobic Digestion Technology: Integrating Economic, Diffusion, and Behavioral Innovation Theories

Bishop, C.P., C.R. Shumway, and P.R. Wandschneider. Land Economics 86 (August 2010):585-608 (senior authorship equally shared).

Land Application – A true path to zero waste?

Organic Waste to Resources Research and Pilot Project Report. Brown, S., K. Kurtz, C. Cogger and A. Bary, March 2010. Ecology Publication Number 09-07-059. This study tested the benefits of compost and biosolids applications to soils. Benefits included increased C and N levels, improved soil bulk density, water holding capacity and crop yield.

Leaching Bed Reactor for Producing Stabilized Plant Growing Media from Dairy Manure

Liao, W., Frear, C., Oakley, K., Chen, S. (2010). Biosystems Engineering 106(3), 278-285.

Biogas production from anaerobic co-digestion of food waste with dairy manure in a two-phase digestion system

Li, R., S. Chen, X. Li. (2010). Applied Biochemistry and Biotechnology 160(2),643-654.

The Economics of Dairy Anaerobic Digestion with Co-Product Marketing

Bishop, C.P. and C.R. Shumway. Review of Agricultural Economics 31, 3(Fall 2009):394-410.

Organic Waste to Resources Research and Pilot Project Report: Producing Energy and Fertilizer from Organic Municipal Solid Waste: Enhancing Hydrolysis and Bacterial Populations and Mixing and Thermodynamic Modeling of New Solid Waste Treatment Technology

Usama Zaher, Shulin Chen, Chenlin Li, Liang Yu, and Timothy Ewing, June 2009. This project developed, tested and modeled a high solids anaerobic digester consisting of a solids reactor and a leached liquids UASB for reacting volatile fatty acids. At near neutral pH the system improves methane production 50% over existing digesters, while return flow reseeds the solids digester with high titer micro-organisms that improved biological kinetics. The dual reactors system provides for control of digester limiting acid and ammonia processes, while allowing for nutrient recovery, and significantly improves performance for capital outlay.

Organic Waste to Resources Research and Pilot Project Report: Converting Washington Lignocellulosic Rich Urban Waste to Ethanol

Rick Gustafson, Renata Bura, Joyce Cooper, Ryan McMahon, Elliott Schmitt, and Azra Vajzovic, September 2009. This study investigated the potential of producing ethanol from three primary sources: mixed waste paper, yard trimmings, and a laboratory prepared mixture (50/50 food & paper) representing MSW. Pretreatment consisted of dilute acid hydrolysis (mixed paper and MSW), and steam explosion (yard waste). Ethanol yields of 105, 90 and 55 gal/ton were found for the MSW, mixed paper, and yard waste. A preliminary Life Cycle Assessment showed that overall environmental impacts of ethanol production from MSW are highly beneficial compared to landfill. Conversion of the MSW mixture to ethanol was found to be economically viable.

Organic Waste to Resources Research and Pilot Project Report: Use of Biochar from the Pyrolysis of Waste Organic Material as a Soil Amendment

David Granatstein, Chad Kruger, Hal Collins, Manuel Garcia-Perez, and Jonathan Yoder, September 2009. Biochars from different feedstocks were tested on five soils. Biochars on all soil types increased soil C. Biochar C was stable in soil with mean residence times estimated in the hundreds of years. Soil nitrate levels were reduced with increasing biochar rate perhaps due to ammonium adsorption. Biochar did not accelerate loss of indigenous organic matter through the ‘priming effect.′ Biochars raised soil pH, but did not lead to consistent plant growth improvements.

« Older Waste to Fuels Publications

Newer Waste to Fuels Publications »