Waste Management Publications

198 Publications

Video: Recovering Nutrients from Manure – New Tools for Maintaining Air and Water Quality

Hall, S., and G.G. Yorgey. 2017.  Produced by CAHNRS Communications. Washington State University, Pullman, WA.  This video profiles two Washington State dairies – Edaleen Dairy and Royal Dairy – who have implemented new technologies that partition, and in some cases recover, some of the nitrogen and phosphorus in manure. The video discusses both the potential that these new tools have to improve manure management for dairies, and some of the challenges that remain.

Approaches for adding value to anaerobically digested dairy fiber

Manuel Raul Pelaez-Samaniego, Rita L Hummel, Wei Liao, Jingwei Ma, Jim Jensen, Chad Kruger, and Craig Frear. 2017. Renewable and Sustainable Energy Reviews 72, 254-268.

Digested Fiber Solids: Methods for Adding Value

Jim Jensen , Dr. Craig Frear , Dr. Jingwei Ma , Chad Kruger , Rita L. Hummel , Georgine Yorgey , WSU Fact Sheet FS235E. November 2016.  This publication describes the composition and separation process for fibrous solids that result from the digestion of dairy manures. It also reviews both current and future potential uses of fiber. This fact sheet is part of the AD Systems Series.

Cellulosic Ethanol in the Pacific Northwest

Research and outreach website. This project was directed by Gregmar I. Galinato, with co-directors Suzette P. Galinato, C. Richard Shumway, and Jonathan K. Yoder.  In an era of increased concern about the influence of carbon on the environment, the U.S. government has intervened, requiring the use of biofuels in an attempt to reduce dependence on fossil fuels. This project focuses on one of those biofuels, cellulosic ethanol, and the countervailing forces influencing its development, especially in the Pacific Northwest.

Profits from pollutants: Economic feasibility of integrated anaerobic digester and nutrient management systems

Astill, G.M. and C.R. Shumway.  Journal of Environmental Management. 2016. In Press.

Phosphorus Uptake by Potato from Fertilizers Recovered from Anaerobic Digestion

Collins, H. P., E. Kimura, C. S. Frear, and C. E. Kruger. 2016. Agron. J. 108:2036-2049. doi:10.2134/agronj2015.0302

Economic Feasibility of Anaerobic Digester Systems with Nutrient Recovery Technologies

Galinato, S. P., C. E. Kruger, and C. Frear. Sept. 2016. WSU Fact Sheet TB27E. This publication analyzes the economic feasibility of three nutrient recovery technologies that work in tandem with anaerobic digester systems. This fact sheet is part of the AD Systems Series.

Assessing the effect of different treatments on decomposition rate of dairy manure

Khalil, Tariq M. , Stewart S. Higgins, Pius M. Ndegwa, Craig S. Frear, Claudio O. Stöckle.  Journal of Environmental Management, Volume 182, 1 November 2016, Pages 230-237, ISSN 0301-479.

Considerations for Incorporating Co-Digestion on Dairy Farms

Kennedy, N., G. Yorgey, C. Frear, and C.E. Kruger. July 2016. WSU Fact Sheet EM088E. This publication discusses the impacts of incorporating co-digestion at dairy-based anaerobic digesters. That is, mixing manure with non-manure waste in anaerobic digesters. This information is based on stakeholder perspectives and a literature review of infrastructure, operational upgrades, and related costs and revenues when non-manure wastes are added to dairy digesters. This fact sheet is part of the AD Systems Series.

Anaerobic digestion effluents and processes: the basics

S. M. Mitchell, N. Kennedy, J. Ma, G. Yorgey, C. Kruger,  J. L. Ullman, C. Frear.  Sept 2015. WSU Fact Sheet FS171E. This fact sheet reviews the basic elements of anaerobic digestion and the process used by digesters, including the types of digesters, biochemistry of influents and effluents, laboratory evaluations and optimizing anaerobic digesting through modeling. This fact sheet is part of the AD Systems Series.

On-Farm Co-Digestion of Dairy Manure with High-Energy Organics

N. Kennedy, G. Yorgey, C. Frear, C. Kruger 2015. WSU Fact Sheet FS172E. This publication focuses on pre-consumer food wastes that can sustainably be used as substrates for co-digestion with dairy manure and increase the value of co-products. Topics covered include complementary and problematic substrates, the substrate procurement process, regulations, and solutions for co-digestion processing issues. This fact sheet is part of the AD Systems Series.

Biogas Upgrading on Dairy Digesters

N. Kennedy, G. Yorgey, C. Frear, D. Evans, J. Jensen, C. Kruger. 2015. WSU Fact Sheet FS180E.  This fact discusses the chemical composition of renewable natural gas, the most appropriate end-use options for dairy digesters, and some of the more common techniques used to clean biogas to RNG quality at dairy digesters. This fact sheet is part of the AD Systems Series.

Anaerobic Digester Project and System Modifications: An Economic Analysis

Galinato, S., C. Kruger, and C. Frear.  2015. WSU Extension Publication EM090E.  This publication introduces readers to key concerns regarding the profitability of anaerobic digestion systems and examines the potential profitability of three alternative anaerobic digester systems: (a) combined heat and power, which is the baseline system; (b) boiler as a substitute for combined heat and power; and (c) renewable natural gas infrastructure. This fact sheet is part of the AD Systems Series.

Technology Research and Extension Related to Anaerobic Digestion of Dairy Manure, 2013-2015 biennium

Chen, S., C. Frear, M. Garcia-Perez, C. Kruger, A. Abghari, P. Ai, N. Abu-Lail, G. Astill, I. Dallmeyer, M. Flury, A. Fortuna, A. Gao, J. Garcia-Nunez, R. Ghoghare, J.B. Harsh, H. Iqbal, J. Jensen, N Kennedy, J. Ma, S. Mitchell, M. Smith, W. Suliman, D. Wang, G. Yorgey, L. Yu, Q. Zhao, S. Zhang, and T. Zhu. 2015. Washington State Department of Agriculture, Olympia, WA.

Advancing Organics Management in Washington State: The Waste to Fuels Technology Partnership

Chen, S., C. Frear, M. Garcia-Perez, J. Jensen, D. Sjoding, C. Kruger, N. Abu-Lail, G. Astill, I. Dallmeyer, M. Flury, A. Fortuna, J. Garcia-Nunez, S. Hall, J.B. Harsh, H. Iqbal, N Kennedy, J. Ma, S. Mitchell, B. Pecha, R. Pelaez-Samaniego, A. Seker, M. Smith, W. Suliman, G. Yorgey, L. Yu, and Q. Zhao. 2016. Publication 16-07-008. Washington Department of Ecology, Olympia, WA.

Evaluation of an integrated ammonia stripping, recovery, and biogas scrubbing system for use with anaerobically digested dairy manure

Jiang, A., Zhang, T., Zhao, Q., Chen, S., Li, X., Frear, C. (2014). Biosystems Engineering, 119: 117-126.

The selective removal of H2S over CO2 from biogas in a bubble column using pretreated digester effluent

Kennedy, N., Zhao, Q., Ma, J., Chen, S., and Frear, C. (2015). Separation and Purification Technology 144, 240-247.

Anaerobic digestion of C1-C4 light oxygenated organic compounds derived from the torrefaction of lignocellulosic materials

Liaw, S.S., Frear, C., Lei, W., Zhang, S., Garcia-Perez, M. (2015). Fuel Processing Technology, 131: 150-158.

Ammonia recovery from anaerobic digester effluent through direct aeration

Zhao, Q., Ma, J., Zeb, I., Yu, L., Chen, S., Zheng, Y.M., and Frear, C. (2015). Chemical Engineering Journal 279, 31-37.

Anaerobic Digester System Enterprise Budget Calculator

Astill, G., R. Shumway, and C. Frear. 2016. This tool calculates the economic value of investment under a variety of technology and price scenarios for an AD system. The budget calculator includes options for anaerobic digestion, codigestion, compressed natural gas, combined heat and power, environmental credits, fiber solids separation, phosphorous solids separation, struvite precipitation, ammonium sulfate recovery, and water ultra-filtration/reverse osmosis.

The Market Impact of Widespread Adoption of Anaerobic Digestion with Nutrient Recovery Technology in US Dairy Industry

Astill, G.M. and C.R. Shumway. Washington State University, School of Economic Sciences Working Paper 2016-2, March 2016.

Bio-Oil: An Introduction to Fast Pyrolysis and its Applications

Murray, T.,  F. Resende, and G. Luo. 2014.  WSU Fact Sheet FS140E. The United States has targeted biofuels generated from domestic biomass supplies as a significant contributor for future liquid fuel supplies. Reliance on domestic fuel production opens the door for a wide range of opportunities for natural resource managers, farmers, and other landowners who will be instrumental in developing the industry, its technologies, and its utilization of agricultural crop residues and forestry biomass. This publication discusses bio-oil produced via fast pyrolysis, its applications, and associated biomass feedstocks.

On-Farm Evaluation and Demonstration of Small-Scale Biogas Technology

Kruger, C. 2009.  Final Report to USDA SARE. This project supported the development, fabrication and demonstration of a biogas technology application for small farms.

Whatcom County Small-Scale Biogas Technology Poster

The Dairy Manure Biorefinery

Graphic poster depicting the biorefinery concept. Developed by Nick Kennedy, Jingwei Ma, Craig Frear, Georgine Yorgey, Tara Zimmerman, Chad Kruger, and Jim Jensen.

« Older Waste Management Publications