Sustainable Practices and Technology RSS feed

How will climate change affect pests of inland Pacific Northwest cereal systems?

Posted by Karen Hills | December 13, 2017

Models suggest that climate change in our region will involve an annual temperature increase of 3-4°F by the 2050’s, accompanied by changes in precipitation patterns, including drier summers despite a 5-15% increase in annual precipitation (Kruger et al. 2017). Even with this information, uncertainty still exists about what climate change will mean for agriculture, in general, and for dryland farming systems in our region, in particular. The book Advances in Dryland Farming in the Inland Pacific Northwest, does its part to help managers make decisions despite this uncertainty. Three chapters in this book explore management of diseases, insects, and weeds (the three major categories of pests) and were written by teams of authors led by Elizabeth Kirby (Washington State University), Sanford Eigenbrode (University of Idaho), and Ian Burke (Washington State University), respectively. Though these chapters provide a wide range of regionally-relevant information that goes far beyond climate, I found it particularly interesting to read through them with an eye to what farmers might expect in terms of changes in pest pressures as a result of projected changes in the climate. Through this process, I learned that although climate change models have improved vastly in recent years, quite a bit of uncertainty exists about the effects of climate change on complex biological systems. Read more »

Cover crop monocultures continue to best mixtures; 2017 Update

Posted by Andrew McGuire | December 12, 2017

About a year ago I declared in a post, “Cover crop best bet is monoculture, not mix.” It stirred up quite a few comments and discussion, but no scientific evidence that countered my assertion. Nevertheless, research continues, so I have followed results as they have been published over the last year. Here is an update.

Is research finding any benefits of cover crop mixtures? Photo: A. McGuire.

Read more »

Filed under Sustainable Practices and Technology
2 Comments

Tillage: When Less Is More

Posted by Karen Hills | December 5, 2017

Though severe erosion can quickly deplete topsoil, rebuilding topsoil is an extremely difficult and slow process, so conserving this resource is imperative. Soil erosion is one of the biggest challenges in agricultural production in the inland Pacific Northwest. Conventional tillage can lead to soil degradation and erosion by wind and water, which can cause concerns for air and water quality, respectively. Conservation tillage—a tillage system which retains residues from the previous crop on the surface, resulting in at least 30% coverage of the soil surface after the planting of the next crop—can dramatically reduce soil erosion. It also offers other benefits, such as improvements in soil quality (Figure 1) and reduced fuel use, allowing it to be widely adopted in some parts of the region. There are many types of conservation tillage used in the Pacific Northwest, which offer different levels of protection of the soil, all the way up to no-till, which results in minimal soil disturbance and maximum retention of soil residue. These differences in practices, as well as other factors, have led to variations across the region in how effective (and profitable) conservation tillage has been. Fortunately, a new resource is available that digs into these differences and why they occur. Read more »

Real-life agricultural innovation: implications for future preparedness

Posted by Sonia A. Hall | December 4, 2017

Extension has traditionally involved getting results from researchers to decision-makers in agriculture. Partly because I work on climate change and agriculture, and partly because of the approach my team and the researchers we work with take, extension is, for us, a two-way street. In this article I want to highlight the “other” side of that street: how innovations that producers test out in real life complement research and supports future preparedness.

Both John Aeschliman (left) and Douglas Poole (right) practice no-till, though they farm with very different precipitation regimes. Photo: Alex Garland.

In preparation for a new project I reviewed case studies and profiles others I work with published as part of the Regional Approaches to Climate Change – Pacific Northwest Agriculture (REACCH-PNA) project, which focused on dryland cereal production in a changing climate. These case studies tell the stories of producers who are implementing practices that break some mold, and that is leading to both interesting results and to benefits that will help them be prepared for future climates. Here I highlight the startling similarities in the stories of two farmers that farm in different precipitation zones. John Aeschliman farms in Colfax, Washington, with a range of precipitation up to 18+ inches annually. Doug Poole farms in Mansfield, Washington, with half that precipitation. Both these farmers are innovative pioneers, and transitioning to no-till is a cornerstone of their innovations. And both no-till and innovation have implications for preparing for future climates. Read more »

Stepping back: What have we learned about agriculture and climate change, and where do we go from here?

Posted by Georgine Yorgey | November 29, 2017

Cattle grazing on an allotment east of the Owyhee River Canyon, Oregon. Used with permission via Flickr from the Bureau of Land Management (CC BY 2.0).

As a number of large climate-and-agriculture projects at our Pacific Northwest universities have come to an end over the last year, we felt it was time to step back and take stock.  Our projects have included dryland wheat farming, anaerobic digestion systems for dairies, and improving understanding of the interactions among carbon, nitrogen, and water at the regional scale. Now that they are complete, what have we learned? Where should research and extension go from here? In an effort to prioritize and catalyze future regional research and extension efforts, we worked with partners to host a workshop titled “Agriculture in a Changing Climate” (March 9-11, 2016). The event brought together a diverse set of stakeholders—university faculty and students, crop and livestock producers, and individuals representing state, tribal and federal government agencies, industry, nonprofit organizations, and conservation districts—to summarize what we know, identify challenges and gaps, and define priorities for moving forward. Since that workshop, a group of us have been working together to continue to synthesize recent research findings and identify priorities related to climate mitigation and adaptation in the Northwest, and the product of that work is now freely available as an online article. Read more »

Variability and Scale: Considerations for Precision Agriculture

Posted by Karen Hills | November 27, 2017

It is human nature to be entranced by the latest electronic gadget that promises to make our lives easier. Sometimes gadgets really do help us, and other times this help is counterbalanced by the hours spent trying to troubleshoot when things go wrong. Because I’m not really a “gadget person” by nature, I must admit that I hadn’t paid a whole lot of attention to precision agriculture during my time working in the world of agricultural research. However, I recently had the opportunity to learn more about this topic while helping to compile and edit the book Advances in Dryland Farming in the Inland Pacific Northwest. By reading the chapter on Precision Agriculture co-authored by Bertie Weddell, Tabitha Brown, and Kristi Borrelli, I learned about two of the most important factors to consider when it comes to the use of precision agriculture technology: variability and scale. Read more »

Diversification where it isn’t easy: Beyond the grain-fallow rotation

Posted by Karen Hills | November 20, 2017

Diversifying crop rotations is a key strategy used to break pest and disease cycles and improve yields. But in the driest areas of the Pacific Northwest the low precipitation amounts limit the diversification strategies that are feasible. These areas have some of the least diverse cropping systems in the region, often with winter wheat as the only crop. In areas receiving less than 16 inches of precipitation a year that are generally too dry to support annual cropping, producers rely on summer fallow to retain winter precipitation in the soil profile. Areas where over 40% of the land a given year is fallowed are classified as grain-fallow cropping systems. From 2007 to 2014, only 4.3% of these areas, on average, were planted to another crop besides winter wheat (Kirby et al. 2017). What opportunities exist for diversifying crop rotations in these low diversity areas? In my work compiling the recently published Advances in Dryland Farming in the Inland Pacific Northwest, I learned one answer to this question: winter peas. Read more »

Can manure sustain soils?

Posted by Andrew McGuire | September 19, 2017

Once you start asking questions, innocence is gone. -Mary Astor

How much manure do you need to spread to maintain your soil’s organic matter? Photo: werktuigendagen via Wikimedia Commons

My first question about manure, “Can Manure Supply Nitrogen and Phosphorus to Agriculture?” was answered here. But manure is more than nutrients. The bulk of manure is organic material, the carbon that the primary-producer feed crop took from the air and built into organic molecules (hence the name “organic”). When added to the soil, some of this manure bulk ends up as soil organic matter.

Organic matter is a small but crucial portion of soil. If we can maintain a soil’s organic matter levels, we have gone a long way in maintaining soil health and function. Can manure do this? Can manure sustain soils?
Read more »

Can Manure Supply Nitrogen and Phosphorus to Agriculture?

Posted by Andrew McGuire | September 7, 2017

Once you start asking questions, innocence is gone. -Mary Astor

Manure, whether fresh, old, or composted, is often declared a key component of sustainable agriculture. From countless trials, researchers have come to similar conclusions (Haynes and Naidu 1998). Manure use is promoted as a solution in discussions of sustainable agriculture topics including: soil fertility, soil health, organic farmingregenerative farming, carbon sequestration, and renewable resources. However, I have questions. Not about the actual spreading of manure, or calculating application rates, but about manure’s role in sustaining agriculture. Is manure a sustainable source of nutrients? Is manure a sustainable organic soil amendment, able to build soil organic matter, store carbon in the soil, and so assist in reducing greenhouse gases? When is manure application a sustainable practice?

In my next few posts, I will answer these questions with the hope of putting manure in its proper role in sustaining agriculture. First, let’s look at the nutrient-supplying potential of manure. It all starts with figuring out where manure comes from. Read more »

What have we learned about dryland cropping systems in the last 15 years?

Posted by Georgine Yorgey | July 13, 2017

Dryland crops are a common sight east of the Cascades, and cover a LOT of acreage in the Pacific Northwest – more than 5.8 million acres according to recent statistics. Over the last three years, a group of us at CSANR have had the privilege of working with more than 40 co-authors (!) from our region’s three land grant universities – WSU, University of Idaho, and Oregon State University – and from USDA Agricultural Research Service to summarize the most up-to-date scientific knowledge about our region’s dryland systems. That work has now been published as a book, Advances in Dryland Farming in the Inland Pacific Northwest. With touchstone chapters on climate considerations (which has always played a predominant role in determining what crops can be grown) and soil health, this wide-ranging book has chapters on conservation tillage systems, residue management, crop intensification and diversification, soil fertility management, soil amendments, precision agriculture, weeds, diseases, and insects, and policy. We invite you to explore the books many chapters online here or download the entire book as a PDF. If you know you will want to read this book and refer to it over time, you can also receive a free printed version as long as funds allow, by ordering here. Read more »

« Older Posts