Skip to main content Skip to navigation
Inspired solutions for the future of agriculture and the environment.
Learn More Program Areas

It is time to know your CROPTIME!

Posted by Adekunle Adesanya | January 19, 2016

This year CSANR sponsored registration for several WSU students to attend Tilth Producers of WA annual conference.  We will be posting reflections written by the students over the next several weeks. Please feel free to comment and give these students your feedback.

Adekunle Adesanya, PhD student in entomology and guest-blogger.
Adekunle Adesanya, PhD student in entomology and guest-blogger.

In humans, after decades of research and innovation, it is still very tricky for medical practitioners to accurately predict a child’s delivery date. Though the doctors estimate delivery dates for expectant mothers, these dates are rarely exactly correct, despite the level of technology involved.

Predicting crop harvest time is not all that different from estimating due dates. Have you ever wondered how complex and challenging it could be to predict the precise harvest date of crops, especially for small scale farmers with limited resources to invest in specialized technologies to support on-farm decision making system? As with doctors and delivery due dates, farmers have an estimate of the time required for the plants to achieve some phenotypic attributes like flowering, fruit setting and ripening etc., but getting it exactly right is rare. This prediction is usually based on prior knowledge about the crop’s biology. However, plant growth and development is largely dependent upon elements of the immediate environment (temperature, light duration, humidity etc.). Thus, crop output in terms of quantity, quality, and timing is dependent on the micro-environment. Therefore for a typical small scale organic farmer, a big question is how to accurately and precisely predict the time period in which harvest is optimal. This is critical to meeting the volatile demand of customers in a timely way (CSA, food co-ops etc.).

Predicting peak harvest time can be a challenge to small acreage producers. Photo: K. & Sybilla via Flickr CC.
Predicting peak harvest time can be a challenge to small acreage producers. Photo: K. & Sybilla via Flickr CC.

The onset of climate change has inevitably resulted in extreme and unpredictable weather (drought, flooding, wildfires etc.) which has led to unexpected responses in crop performance. Now more than ever it is difficult for farmer to know the likely output and harvest time beforehand. Despite the numerous changes attributable to climate change, one thing that is constant and certain is that farmers have to keep up with the demand of their customers, in timely manner, if they want to remain in business. Knowing the crops and varieties to plant, at what time and when to expect harvest is crucial to achieving this goal.

A group of researchers from Oregon State University under the Small Farms program is taking the bull by the horns. They have developed a simple and affordable tool to help farmers make better decisions and plan amid the stochastic weather situation. CROPTIME is an online tool which uses a combination of site-specific local environmental factors to help farmers make accurate and precise predictions of the growth and harvest times for their vegetables.  This tool stands out from other similar tools in that it uses weather data from local areas in the Pacific Northwest region of Washington and Oregon, and is therefore able to give very accurate output that farmers in this area can rely on.

CROPTIME tool displaying weather station in WA State. Click image to access.
CROPTIME tool displaying weather station in WA State. Click image to access.

The CROPTIME tool is based on the degree day model to help farmers make decisions. Degree day models have been intensely used to predict the emergence, growth and development for insect pests, consequently helping farmers and pest managers to properly time the application of insecticides, baits and traps to reduce losses and damage caused by insects and other invertebrate pests. Degree day (DD) modelling for pests has saved money and reduced excess pesticide use.  A degree day is calculated by subtracting the minimum developmental temperature for a particular ectothermal organism from the daily mean temperature.  Similar to insect degree day models, CROPTIME currently has: over 70 DD models to predict harvest dates for vegetables varieties, 6 weeds DD models for proper weed control and a DD nitrogen tool for optimal nitrogen application crops.

Farmers that intend to use CROPTIME select a very proximate weather station (over 1500 weather stations are available) and choose a model that best meets their farm setting. A proposed planting date is entered and the model is run to produce the crop time schedule based on the prevailing data available for the site of interest. The tool is very flexible for users, and can be customized in different situations for a variety of outputs.

As more and more farming decision-support systems are being introduced to help farmers, there will be a need to integrate these tools into a central piece that can be easily managed and is accessible to farmers and other end users. New advances in research and knowledge will also need to be included in these tools so they don’t become obsolete. The design of the tools should involve all the stakeholders and policy makers. Furthermore, as more varieties of crops and vegetables are developed and released for farming, they should be incorporated into the decision support tools.  Most importantly, extension agents who serve small acreage farmers will need to intensify their efforts in teaching the usage of these kinds of tools.

While predicting baby delivery dates is outside my area of study, I see great promise for farmers in more accurately predicting optimal harvest dates, and CROPTIME is a tool to help.

3 thoughts on "It is time to know your CROPTIME!"

  1. Steve Neason says:

    I am a retired IT manager with a background in hard science, now running a small market garden CSA operation in SE King Co Washington. I really geek out on this kind of thing.

    I looked at the tool in its current state. It looks to have potential, though I am concerned about the cost and effectiveness of tool maintenance. It currently has a limited data set.

    I see myself using such a tool during my planning period (Nov-Jan). I would use it to some degree to match harvest dates for our early CSA boxes, but I see my greatest value in using it to experiment with cultivars I plan to grow for which I have no prior experience. Therefore I would need to have a way to configure such a cultivar’s published characteristics, since I do not anticipate that the tool would be maintained to the point that it carried data on all possible cultivars. Though perhaps mapping a new cultivar to a similar existing cultivar might be more efficient.

  2. Kunle says:

    Good points Steve,
    I think this kind of innovation will require some degree of aggregation among different disciplines(breeders, entomologists etc) for continued update with new varieties. With respect to cost of sustaining the system, affiliating this tool to research programs and labs in universities will be very helpful.
    Cheers, good luck in planting later this year

  3. Akinyemi Oyeleke says:

    Thats a good write up you got there Adekunle Adesanya!

Leave a Reply

Your email address will not be published. Required fields are marked *